Velocity, force, power, and Ca2+ sensitivity of fast and slow monkey skeletal muscle fibers.
نویسندگان
چکیده
In this study, we determined the contractile properties of single chemically skinned fibers prepared from the medial gastrocnemius (MG) and soleus (Sol) muscles of adult male rhesus monkeys and assessed the effects of the spaceflight living facility known as the experiment support primate facility (ESOP). Muscle biopsies were obtained 4 wk before and immediately after an 18-day ESOP sit, and fiber type was determined by immunohistochemical techniques. The MG slow type I fiber was significantly smaller than the MG type II, Sol type I, and Sol type II fibers. The ESOP sit caused a significant reduction in the diameter of type I and type I/II (hybrid) fibers of Sol and MG type II and hybrid fibers but no shift in fiber type distribution. Single-fiber peak force (mN and kN/m2) was similar between fiber types and was not significantly different from values previously reported for other species. The ESOP sit significantly reduced the force (mN) of Sol type I and MG type II fibers. This decline was entirely explained by the atrophy of these fiber types because the force per cross-sectional area (kN/m2) was not altered. Peak power of Sol and MG fast type II fiber was 5 and 8.5 times that of slow type I fiber, respectively. The ESOP sit reduced peak power by 25 and 18% in Sol type I and MG type II fibers, respectively, and, for the former fiber type, shifted the force-pCa relationship to the right, increasing the Ca2+ activation threshold and the free Ca2+ concentration, eliciting half-maximal activation. The ESOP sit had no effect on the maximal shortening velocity (Vo) of any fiber type. Vo of the hybrid fibers was only slightly higher than that of slow type I fibers. This result supports the hypothesis that in hybrid fibers the slow myosin heavy chain would be expected to have a disproportionately greater influence on Vo.
منابع مشابه
Functional adaptability of muscle fibers to long-term resistance exercise.
PURPOSE We compared the functional properties of muscle fibers from two groups of subjects that differed widely in their training history to investigate whether long-term resistance exercise alters the intrinsic contractile properties of skeletal muscle fibers. METHODS Vastus lateralis muscle biopsies were obtained from six sedentary males (NT group, age = 23 +/- 1 yr) and six males who had p...
متن کاملThe cross-bridge cycle and skeletal muscle fatigue.
The functional correlates of fatigue observed in both animals and humans during exercise include a decline in peak force (P0), maximal velocity, and peak power. Establishing the extent to which these deleterious functional changes result from direct effects on the myofilaments is facilitated through understanding the molecular mechanisms of the cross-bridge cycle. With actin-myosin binding, the...
متن کاملSpaceflight effects on single skeletal muscle fiber function in the rhesus monkey.
The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsu...
متن کاملShortening Velocity and Power Output of Skinned Muscle Fibers from Mammals Having a 25,000-fold Range of Body Mass
The shortening velocities of single, skinned, fast and slow skeletal muscle fibers were measured at 5---6°C in five animal species having a 25,000-fold range of body size (mouse, rat, rabbit, sheep, and cow). While fiber diameter and isometric force showed no dependence on animal body size, maximum shortening velocity in both fast and slow fibers and maximum power output in fast fibers were fou...
متن کاملShortening velocity and power output of skinned muscle fibers from mammals having a 25,000-fold range of body mass
The shortening velocities of single, skinned, fast and slow skeletal muscle fibers were measured at 5-6 degrees C in five animal species having a 25,000-fold range of body size (mouse, rat, rabbit, sheep, and cow). While fiber diameter and isometric force showed no dependence on animal body size, maximum shortening velocity in both fast and slow fibers and maximum power output in fast fibers we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 84 5 شماره
صفحات -
تاریخ انتشار 1998